3.1.27 \(\int \tan ^5(d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx\) [27]

3.1.27.1 Optimal result
3.1.27.2 Mathematica [A] (verified)
3.1.27.3 Rubi [A] (verified)
3.1.27.4 Maple [A] (verified)
3.1.27.5 Fricas [A] (verification not implemented)
3.1.27.6 Sympy [F]
3.1.27.7 Maxima [F]
3.1.27.8 Giac [F(-1)]
3.1.27.9 Mupad [F(-1)]

3.1.27.1 Optimal result

Integrand size = 35, antiderivative size = 270 \[ \int \tan ^5(d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx=-\frac {\sqrt {a-b+c} \text {arctanh}\left (\frac {2 a-b+(b-2 c) \tan ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{2 e}+\frac {\left (b^3+2 b^2 c-4 b (a-2 c) c-8 c^2 (a+2 c)\right ) \text {arctanh}\left (\frac {b+2 c \tan ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{32 c^{5/2} e}-\frac {\left ((b-2 c) (b+4 c)+2 c (b+2 c) \tan ^2(d+e x)\right ) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}{16 c^2 e}+\frac {\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}}{6 c e} \]

output
1/32*(b^3+2*b^2*c-4*b*(a-2*c)*c-8*c^2*(a+2*c))*arctanh(1/2*(b+2*c*tan(e*x+ 
d)^2)/c^(1/2)/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2))/c^(5/2)/e-1/2*arcta 
nh(1/2*(2*a-b+(b-2*c)*tan(e*x+d)^2)/(a-b+c)^(1/2)/(a+b*tan(e*x+d)^2+c*tan( 
e*x+d)^4)^(1/2))*(a-b+c)^(1/2)/e-1/16*(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1 
/2)*((b-2*c)*(b+4*c)+2*c*(b+2*c)*tan(e*x+d)^2)/c^2/e+1/6*(a+b*tan(e*x+d)^2 
+c*tan(e*x+d)^4)^(3/2)/c/e
 
3.1.27.2 Mathematica [A] (verified)

Time = 6.06 (sec) , antiderivative size = 290, normalized size of antiderivative = 1.07 \[ \int \tan ^5(d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx=\frac {-48 c^{5/2} \sqrt {a-b+c} \text {arctanh}\left (\frac {2 a-b+(b-2 c) \tan ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )+3 \left (b^3+2 b^2 c-4 b (a-2 c) c-8 c^2 (a+2 c)\right ) \text {arctanh}\left (\frac {b+2 c \tan ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )+\frac {1}{4} \sqrt {c} \left (-9 b^2+24 a c-16 b c+84 c^2-4 \left (3 b^2+6 b c-8 c (a+2 c)\right ) \cos (2 (d+e x))+\left (-3 b^2+8 a c-8 b c+44 c^2\right ) \cos (4 (d+e x))\right ) \sec ^4(d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}{96 c^{5/2} e} \]

input
Integrate[Tan[d + e*x]^5*Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4],x]
 
output
(-48*c^(5/2)*Sqrt[a - b + c]*ArcTanh[(2*a - b + (b - 2*c)*Tan[d + e*x]^2)/ 
(2*Sqrt[a - b + c]*Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4])] + 3*(b^ 
3 + 2*b^2*c - 4*b*(a - 2*c)*c - 8*c^2*(a + 2*c))*ArcTanh[(b + 2*c*Tan[d + 
e*x]^2)/(2*Sqrt[c]*Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4])] + (Sqrt 
[c]*(-9*b^2 + 24*a*c - 16*b*c + 84*c^2 - 4*(3*b^2 + 6*b*c - 8*c*(a + 2*c)) 
*Cos[2*(d + e*x)] + (-3*b^2 + 8*a*c - 8*b*c + 44*c^2)*Cos[4*(d + e*x)])*Se 
c[d + e*x]^4*Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4])/4)/(96*c^(5/2) 
*e)
 
3.1.27.3 Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 279, normalized size of antiderivative = 1.03, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.343, Rules used = {3042, 4183, 1578, 1267, 27, 1231, 27, 1269, 1092, 219, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^5(d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \tan (d+e x)^5 \sqrt {a+b \tan (d+e x)^2+c \tan (d+e x)^4}dx\)

\(\Big \downarrow \) 4183

\(\displaystyle \frac {\int \frac {\tan ^5(d+e x) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 1578

\(\displaystyle \frac {\int \frac {\tan ^4(d+e x) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}{\tan ^2(d+e x)+1}d\tan ^2(d+e x)}{2 e}\)

\(\Big \downarrow \) 1267

\(\displaystyle \frac {\frac {\int -\frac {3 \left ((b+2 c) \tan ^2(d+e x)+b\right ) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}{2 \left (\tan ^2(d+e x)+1\right )}d\tan ^2(d+e x)}{3 c}+\frac {\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}}{3 c}}{2 e}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}}{3 c}-\frac {\int \frac {\left ((b+2 c) \tan ^2(d+e x)+b\right ) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}{\tan ^2(d+e x)+1}d\tan ^2(d+e x)}{2 c}}{2 e}\)

\(\Big \downarrow \) 1231

\(\displaystyle \frac {\frac {\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}}{3 c}-\frac {\frac {\left (2 c (b+2 c) \tan ^2(d+e x)+(b-2 c) (b+4 c)\right ) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}{4 c}-\frac {\int \frac {\left (b^3+2 c b^2-4 (a-2 c) c b-8 c^2 (a+2 c)\right ) \tan ^2(d+e x)+(b-2 c) \left (b^2+4 c b-4 a c\right )}{2 \left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)}{4 c}}{2 c}}{2 e}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}}{3 c}-\frac {\frac {\left (2 c (b+2 c) \tan ^2(d+e x)+(b-2 c) (b+4 c)\right ) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}{4 c}-\frac {\int \frac {\left (b^3+2 c b^2-4 (a-2 c) c b-8 c^2 (a+2 c)\right ) \tan ^2(d+e x)+(b-2 c) \left (b^2+4 c b-4 a c\right )}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)}{8 c}}{2 c}}{2 e}\)

\(\Big \downarrow \) 1269

\(\displaystyle \frac {\frac {\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}}{3 c}-\frac {\frac {\left (2 c (b+2 c) \tan ^2(d+e x)+(b-2 c) (b+4 c)\right ) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}{4 c}-\frac {\left (-4 b c (a-2 c)-8 c^2 (a+2 c)+b^3+2 b^2 c\right ) \int \frac {1}{\sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)+16 c^2 (a-b+c) \int \frac {1}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)}{8 c}}{2 c}}{2 e}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {\frac {\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}}{3 c}-\frac {\frac {\left (2 c (b+2 c) \tan ^2(d+e x)+(b-2 c) (b+4 c)\right ) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}{4 c}-\frac {2 \left (-4 b c (a-2 c)-8 c^2 (a+2 c)+b^3+2 b^2 c\right ) \int \frac {1}{4 c-\tan ^4(d+e x)}d\frac {2 c \tan ^2(d+e x)+b}{\sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}+16 c^2 (a-b+c) \int \frac {1}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)}{8 c}}{2 c}}{2 e}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}}{3 c}-\frac {\frac {\left (2 c (b+2 c) \tan ^2(d+e x)+(b-2 c) (b+4 c)\right ) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}{4 c}-\frac {16 c^2 (a-b+c) \int \frac {1}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)+\frac {\left (-4 b c (a-2 c)-8 c^2 (a+2 c)+b^3+2 b^2 c\right ) \text {arctanh}\left (\frac {b+2 c \tan ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{\sqrt {c}}}{8 c}}{2 c}}{2 e}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {\frac {\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}}{3 c}-\frac {\frac {\left (2 c (b+2 c) \tan ^2(d+e x)+(b-2 c) (b+4 c)\right ) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}{4 c}-\frac {\frac {\left (-4 b c (a-2 c)-8 c^2 (a+2 c)+b^3+2 b^2 c\right ) \text {arctanh}\left (\frac {b+2 c \tan ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{\sqrt {c}}-32 c^2 (a-b+c) \int \frac {1}{4 (a-b+c)-\tan ^4(d+e x)}d\frac {(b-2 c) \tan ^2(d+e x)+2 a-b}{\sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}}{8 c}}{2 c}}{2 e}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}}{3 c}-\frac {\frac {\left (2 c (b+2 c) \tan ^2(d+e x)+(b-2 c) (b+4 c)\right ) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}{4 c}-\frac {\frac {\left (-4 b c (a-2 c)-8 c^2 (a+2 c)+b^3+2 b^2 c\right ) \text {arctanh}\left (\frac {b+2 c \tan ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{\sqrt {c}}-16 c^2 \sqrt {a-b+c} \text {arctanh}\left (\frac {2 a+(b-2 c) \tan ^2(d+e x)-b}{2 \sqrt {a-b+c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{8 c}}{2 c}}{2 e}\)

input
Int[Tan[d + e*x]^5*Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4],x]
 
output
((a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4)^(3/2)/(3*c) - (-1/8*(-16*c^2*Sq 
rt[a - b + c]*ArcTanh[(2*a - b + (b - 2*c)*Tan[d + e*x]^2)/(2*Sqrt[a - b + 
 c]*Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4])] + ((b^3 + 2*b^2*c - 4* 
b*(a - 2*c)*c - 8*c^2*(a + 2*c))*ArcTanh[(b + 2*c*Tan[d + e*x]^2)/(2*Sqrt[ 
c]*Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4])])/Sqrt[c])/c + (((b - 2* 
c)*(b + 4*c) + 2*c*(b + 2*c)*Tan[d + e*x]^2)*Sqrt[a + b*Tan[d + e*x]^2 + c 
*Tan[d + e*x]^4])/(4*c))/(2*c))/(2*e)
 

3.1.27.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1231
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) 
 - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*((a + b*x + c*x^2)^p/ 
(c*e^2*(m + 2*p + 1)*(m + 2*p + 2))), x] - Simp[p/(c*e^2*(m + 2*p + 1)*(m + 
 2*p + 2))   Int[(d + e*x)^m*(a + b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2* 
a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p - c*d - 2* 
c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c 
^2*d^2*(1 + 2*p) - c*e*(b*d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x 
] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && GtQ[p, 0] && (IntegerQ[p] ||  !R 
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (Integer 
Q[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 

rule 1267
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_ 
) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[g^n*(d + e*x)^(m + n - 1)*((a + b 
*x + c*x^2)^(p + 1)/(c*e^(n - 1)*(m + n + 2*p + 1))), x] + Simp[1/(c*e^n*(m 
 + n + 2*p + 1))   Int[(d + e*x)^m*(a + b*x + c*x^2)^p*ExpandToSum[c*e^n*(m 
 + n + 2*p + 1)*(f + g*x)^n - c*g^n*(m + n + 2*p + 1)*(d + e*x)^n - g^n*(d 
+ e*x)^(n - 2)*(b*d*e*(p + 1) + a*e^2*(m + n - 1) - c*d^2*(m + n + 2*p + 1) 
 - e*(2*c*d - b*e)*(m + n + p)*x), x], x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, p}, x] && IGtQ[n, 1] && IntegerQ[m] && NeQ[m + n + 2*p + 1, 0]
 

rule 1269
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + b*x + 
 c*x^2)^p, x], x] + Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + b*x + c*x^2)^ 
p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 

rule 1578
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_ 
)^4)^(p_.), x_Symbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a 
+ b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && Int 
egerQ[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4183
Int[tan[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*((f_.)*tan[(d_.) + (e_.)*( 
x_)])^(n_.) + (c_.)*((f_.)*tan[(d_.) + (e_.)*(x_)])^(n2_.))^(p_), x_Symbol] 
 :> Simp[f/e   Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)), x 
], x, f*Tan[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n 
2, 2*n] && NeQ[b^2 - 4*a*c, 0]
 
3.1.27.4 Maple [A] (verified)

Time = 0.29 (sec) , antiderivative size = 455, normalized size of antiderivative = 1.69

method result size
derivativedivides \(\frac {\frac {\left (a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}\right )^{\frac {3}{2}}}{6 c}-\frac {b \left (\frac {\left (b +2 c \tan \left (e x +d \right )^{2}\right ) \sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}}{4 c}+\frac {\left (4 a c -b^{2}\right ) \ln \left (\frac {\frac {b}{2}+c \tan \left (e x +d \right )^{2}}{\sqrt {c}}+\sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}\right )}{8 c^{\frac {3}{2}}}\right )}{4 c}-\frac {\left (b +2 c \tan \left (e x +d \right )^{2}\right ) \sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}}{8 c}-\frac {\left (4 a c -b^{2}\right ) \ln \left (\frac {\frac {b}{2}+c \tan \left (e x +d \right )^{2}}{\sqrt {c}}+\sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}\right )}{16 c^{\frac {3}{2}}}+\frac {\sqrt {c \left (1+\tan \left (e x +d \right )^{2}\right )^{2}+\left (b -2 c \right ) \left (1+\tan \left (e x +d \right )^{2}\right )+a -b +c}}{2}+\frac {\left (b -2 c \right ) \ln \left (\frac {\frac {b}{2}-c +\left (1+\tan \left (e x +d \right )^{2}\right ) c}{\sqrt {c}}+\sqrt {c \left (1+\tan \left (e x +d \right )^{2}\right )^{2}+\left (b -2 c \right ) \left (1+\tan \left (e x +d \right )^{2}\right )+a -b +c}\right )}{4 \sqrt {c}}-\frac {\sqrt {a -b +c}\, \ln \left (\frac {2 a -2 b +2 c +\left (b -2 c \right ) \left (1+\tan \left (e x +d \right )^{2}\right )+2 \sqrt {a -b +c}\, \sqrt {c \left (1+\tan \left (e x +d \right )^{2}\right )^{2}+\left (b -2 c \right ) \left (1+\tan \left (e x +d \right )^{2}\right )+a -b +c}}{1+\tan \left (e x +d \right )^{2}}\right )}{2}}{e}\) \(455\)
default \(\frac {\frac {\left (a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}\right )^{\frac {3}{2}}}{6 c}-\frac {b \left (\frac {\left (b +2 c \tan \left (e x +d \right )^{2}\right ) \sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}}{4 c}+\frac {\left (4 a c -b^{2}\right ) \ln \left (\frac {\frac {b}{2}+c \tan \left (e x +d \right )^{2}}{\sqrt {c}}+\sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}\right )}{8 c^{\frac {3}{2}}}\right )}{4 c}-\frac {\left (b +2 c \tan \left (e x +d \right )^{2}\right ) \sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}}{8 c}-\frac {\left (4 a c -b^{2}\right ) \ln \left (\frac {\frac {b}{2}+c \tan \left (e x +d \right )^{2}}{\sqrt {c}}+\sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}\right )}{16 c^{\frac {3}{2}}}+\frac {\sqrt {c \left (1+\tan \left (e x +d \right )^{2}\right )^{2}+\left (b -2 c \right ) \left (1+\tan \left (e x +d \right )^{2}\right )+a -b +c}}{2}+\frac {\left (b -2 c \right ) \ln \left (\frac {\frac {b}{2}-c +\left (1+\tan \left (e x +d \right )^{2}\right ) c}{\sqrt {c}}+\sqrt {c \left (1+\tan \left (e x +d \right )^{2}\right )^{2}+\left (b -2 c \right ) \left (1+\tan \left (e x +d \right )^{2}\right )+a -b +c}\right )}{4 \sqrt {c}}-\frac {\sqrt {a -b +c}\, \ln \left (\frac {2 a -2 b +2 c +\left (b -2 c \right ) \left (1+\tan \left (e x +d \right )^{2}\right )+2 \sqrt {a -b +c}\, \sqrt {c \left (1+\tan \left (e x +d \right )^{2}\right )^{2}+\left (b -2 c \right ) \left (1+\tan \left (e x +d \right )^{2}\right )+a -b +c}}{1+\tan \left (e x +d \right )^{2}}\right )}{2}}{e}\) \(455\)

input
int((a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2)*tan(e*x+d)^5,x,method=_RETURNV 
ERBOSE)
 
output
1/e*(1/6*(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(3/2)/c-1/4*b/c*(1/4*(b+2*c*tan 
(e*x+d)^2)/c*(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2)+1/8*(4*a*c-b^2)/c^(3/ 
2)*ln((1/2*b+c*tan(e*x+d)^2)/c^(1/2)+(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/ 
2)))-1/8*(b+2*c*tan(e*x+d)^2)/c*(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2)-1/ 
16*(4*a*c-b^2)/c^(3/2)*ln((1/2*b+c*tan(e*x+d)^2)/c^(1/2)+(a+b*tan(e*x+d)^2 
+c*tan(e*x+d)^4)^(1/2))+1/2*(c*(1+tan(e*x+d)^2)^2+(b-2*c)*(1+tan(e*x+d)^2) 
+a-b+c)^(1/2)+1/4*(b-2*c)*ln((1/2*b-c+(1+tan(e*x+d)^2)*c)/c^(1/2)+(c*(1+ta 
n(e*x+d)^2)^2+(b-2*c)*(1+tan(e*x+d)^2)+a-b+c)^(1/2))/c^(1/2)-1/2*(a-b+c)^( 
1/2)*ln((2*a-2*b+2*c+(b-2*c)*(1+tan(e*x+d)^2)+2*(a-b+c)^(1/2)*(c*(1+tan(e* 
x+d)^2)^2+(b-2*c)*(1+tan(e*x+d)^2)+a-b+c)^(1/2))/(1+tan(e*x+d)^2)))
 
3.1.27.5 Fricas [A] (verification not implemented)

Time = 2.89 (sec) , antiderivative size = 1405, normalized size of antiderivative = 5.20 \[ \int \tan ^5(d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx=\text {Too large to display} \]

input
integrate((a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2)*tan(e*x+d)^5,x, algorith 
m="fricas")
 
output
[1/192*(48*sqrt(a - b + c)*c^3*log(((b^2 + 4*(a - 2*b)*c + 8*c^2)*tan(e*x 
+ d)^4 + 2*(4*a*b - 3*b^2 - 4*(a - b)*c)*tan(e*x + d)^2 - 4*sqrt(c*tan(e*x 
 + d)^4 + b*tan(e*x + d)^2 + a)*((b - 2*c)*tan(e*x + d)^2 + 2*a - b)*sqrt( 
a - b + c) + 8*a^2 - 8*a*b + b^2 + 4*a*c)/(tan(e*x + d)^4 + 2*tan(e*x + d) 
^2 + 1)) - 3*(b^3 - 8*(a - b)*c^2 - 16*c^3 - 2*(2*a*b - b^2)*c)*sqrt(c)*lo 
g(8*c^2*tan(e*x + d)^4 + 8*b*c*tan(e*x + d)^2 + b^2 - 4*sqrt(c*tan(e*x + d 
)^4 + b*tan(e*x + d)^2 + a)*(2*c*tan(e*x + d)^2 + b)*sqrt(c) + 4*a*c) + 4* 
(8*c^3*tan(e*x + d)^4 - 3*b^2*c + 2*(4*a - 3*b)*c^2 + 24*c^3 + 2*(b*c^2 - 
6*c^3)*tan(e*x + d)^2)*sqrt(c*tan(e*x + d)^4 + b*tan(e*x + d)^2 + a))/(c^3 
*e), 1/96*(24*sqrt(a - b + c)*c^3*log(((b^2 + 4*(a - 2*b)*c + 8*c^2)*tan(e 
*x + d)^4 + 2*(4*a*b - 3*b^2 - 4*(a - b)*c)*tan(e*x + d)^2 - 4*sqrt(c*tan( 
e*x + d)^4 + b*tan(e*x + d)^2 + a)*((b - 2*c)*tan(e*x + d)^2 + 2*a - b)*sq 
rt(a - b + c) + 8*a^2 - 8*a*b + b^2 + 4*a*c)/(tan(e*x + d)^4 + 2*tan(e*x + 
 d)^2 + 1)) - 3*(b^3 - 8*(a - b)*c^2 - 16*c^3 - 2*(2*a*b - b^2)*c)*sqrt(-c 
)*arctan(1/2*sqrt(c*tan(e*x + d)^4 + b*tan(e*x + d)^2 + a)*(2*c*tan(e*x + 
d)^2 + b)*sqrt(-c)/(c^2*tan(e*x + d)^4 + b*c*tan(e*x + d)^2 + a*c)) + 2*(8 
*c^3*tan(e*x + d)^4 - 3*b^2*c + 2*(4*a - 3*b)*c^2 + 24*c^3 + 2*(b*c^2 - 6* 
c^3)*tan(e*x + d)^2)*sqrt(c*tan(e*x + d)^4 + b*tan(e*x + d)^2 + a))/(c^3*e 
), -1/192*(96*sqrt(-a + b - c)*c^3*arctan(-1/2*sqrt(c*tan(e*x + d)^4 + b*t 
an(e*x + d)^2 + a)*((b - 2*c)*tan(e*x + d)^2 + 2*a - b)*sqrt(-a + b - c...
 
3.1.27.6 Sympy [F]

\[ \int \tan ^5(d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx=\int \sqrt {a + b \tan ^{2}{\left (d + e x \right )} + c \tan ^{4}{\left (d + e x \right )}} \tan ^{5}{\left (d + e x \right )}\, dx \]

input
integrate((a+b*tan(e*x+d)**2+c*tan(e*x+d)**4)**(1/2)*tan(e*x+d)**5,x)
 
output
Integral(sqrt(a + b*tan(d + e*x)**2 + c*tan(d + e*x)**4)*tan(d + e*x)**5, 
x)
 
3.1.27.7 Maxima [F]

\[ \int \tan ^5(d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx=\int { \sqrt {c \tan \left (e x + d\right )^{4} + b \tan \left (e x + d\right )^{2} + a} \tan \left (e x + d\right )^{5} \,d x } \]

input
integrate((a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2)*tan(e*x+d)^5,x, algorith 
m="maxima")
 
output
integrate(sqrt(c*tan(e*x + d)^4 + b*tan(e*x + d)^2 + a)*tan(e*x + d)^5, x)
 
3.1.27.8 Giac [F(-1)]

Timed out. \[ \int \tan ^5(d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx=\text {Timed out} \]

input
integrate((a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2)*tan(e*x+d)^5,x, algorith 
m="giac")
 
output
Timed out
 
3.1.27.9 Mupad [F(-1)]

Timed out. \[ \int \tan ^5(d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx=\int {\mathrm {tan}\left (d+e\,x\right )}^5\,\sqrt {c\,{\mathrm {tan}\left (d+e\,x\right )}^4+b\,{\mathrm {tan}\left (d+e\,x\right )}^2+a} \,d x \]

input
int(tan(d + e*x)^5*(a + b*tan(d + e*x)^2 + c*tan(d + e*x)^4)^(1/2),x)
 
output
int(tan(d + e*x)^5*(a + b*tan(d + e*x)^2 + c*tan(d + e*x)^4)^(1/2), x)